
MATERIAL EXCHANGE FORMAT
P. Ferreira
MOG Solutions

This is the second of a series of two articles on the Material eXchange Format. While
the first one [1] gave an historical perspective on the evolution of MXF, this one goes
further into the specifics, describing the technical details of this file format.

The ultimate goal of MXF is to interchange Essence (picture, sound and data), Descriptive Metadata
and composition information: that is, very simple EDLs. This of course has to be done efficiently and
in a platform-independent way. Furthermore, MXF has extensibility as one of its main principles: it
must be possible to add more capabilities without changing the core format or breaking backward
compatibility.

In order to achieve these goals, MXF defines a set of high-level concepts and some “scaffolding”
that binds everything together:

Essence Containers – a well-defined way of carrying essence;
Index Tables – an essence-agnostic way of mapping time offsets to byte offsets;
Header Metadata – a technical description of the structure and contents of the file, plus
optional Descriptive Metadata;
Partition Metadata – the metadata used to describe the physical structure of the file;
Random Index Pack – an index to assist in the location of Partitions in the file;
Run-In – an optional, non-standard block of data at the top of the file, only used in specialised
Operational Patterns.

Like most file formats, MXF uses a header and a footer (Fig. 1). While the header allows a decoder
to easily identify a file as MXF, the footer unambiguously marks the end of the data.

The big lump in the middle, the
file body, is where essence is
carried, typically accompanied
by an index table that speeds
up random access. Yet, the
most interesting part is proba-
bly the block called Header
Metadata: a rich and extensi-
ble model for expressing the
contents of the file, to describe it unambiguously in technical terms and, optionally, to describe it in
semantic terms.

MXF— a technical overview

Figure 1
Layout of a simple MXF file
EBU TECHNICAL REVIEW – 2010 Q3 1 / 10
P. Ferreira

MATERIAL EXCHANGE FORMAT
KLV coding
The above is a bird’s eye view of an MXF file. But at ground level, an MXF file is a sequence of
bytes, each having its content and “meaning”, which must unambiguously be understood by a com-
pliant decoder. Therefore, a clear syntax must be defined for a successful interchange to happen.
Then again, if MXF defined exactly what kinds of items were allowed, extensibility would be seri-
ously impaired. In order to accommodate for future extensions, MXF adopts a strategy that permits
adding new items without breaking backward compatibility: KLV coding [2].

KLV coding uses a triplet to encode each element:
Key – the identifier of the element, an SMPTE Universal Label (UL) [3];
Length – the length of the data (coded in BER [4], a variable-length encoding used in order to
reduce the amount of space required for this item);
Value – the actual value of the element.

An MXF file is strictly composed
of a sequence of KLV packets
(Fig. 2). Basically, KLVs can
contain Data Items (e.g. a video
frame) or Data Groups (e.g. a
Metadata Set).

When parsing an MXF file, a decoder looks at the key and, if the key is known, reads the value and
processes it; if the decoder does not recognize the key, it uses the length field to skip the data. This
allows unknown elements (e.g. new Metadata Sets) to be discarded and not cause the decoder to
go off sync.

Data items
The most obvious content for a KLV is a single item, a good example being a video frame.

Fig. 3 (upper) shows an example of a Data Item in a KLV. The key identifies the data as a picture
item (this key is defined in [5]); the length is 200265 encoded in BER; finally, the value is the picture
data itself.

Data groups
Not all items are wrapped alone
in its own KLV. Doing that for
small items such as the meta-
data that defines a frame width
or the offset of the previous par-
tition would incur too much
overhead. Plus, it makes
sense to bundle together
related items in a single KLV.

For example, a “Person” meta-
data set can be wrapped in a
single packet. Therefore, MXF
uses two of the grouping meth-
ods defined in the KLV stand-
ard: Local Sets, used for
example to wrap Metadata
Sets; and Defined-length
Packs which are used, among

Figure 2
MXF as a sequence of KLV packets

Figure 3
Examples of KLV packets
EBU TECHNICAL REVIEW – 2010 Q3 2 / 10
P. Ferreira

MATERIAL EXCHANGE FORMAT
others, for Partition Packs or Index Table Segments.

In a Local Set (Fig. 3, middle), the KLV Key is a 16 byte UL but each element is identified by a 2-byte
Local Tag that can be mapped to a full UL via an MXF mechanism called Primer Pack. Elements fol-
low any order inside the Set and can be omitted if not used.

In a Defined-length Pack (Fig. 3, lower), a standard (e.g. MXF itself) defines the meaning of each
element and their individual lengths. Elements follow a predefined order inside the pack.

KAG
One final remark is related with file-access efficiency. Most storage devices are optimized to be
accessed in fixed-size “chunks”, or sectors. MXF caters for this by means of a mechanism called
the KLV Alignment Grid. This allows aligning “important” parts of the file with the sectors, thus
increasing access speed. This is done by inserting special KLVs called fill items between the rele-
vant KLV packets.

Essence containers
MXF files may refer to external essence, at the limit carrying only metadata. However, most applica-
tions use MXF to carry the actual essence.

MXF carries essence inside a structure appropriately named Essence Container. The core MXF
standard [5] defines the requirements for Essence Containers, which are materialised in the MXF
Generic Container [6]. Then, for each essence format that may be carried in MXF, an additional
mapping defines the specifics, e.g. for MPEG [7], for AES3/BWave [8] or AVC-Intra [9].

The MXF Generic Container is a streamable data container, meaning it was designed to allow the
audiovisual material to be continuously decoded, which is achieved by interleaving the data streams,
typically over a 1-frame duration.

The MXF Generic Container comprises a contiguous sequence of Content Packages [10], each of
which has up to five basic components, known as items: system, picture, sound, data and com-
pound. Each item can contain more than one element: e.g. an audio item can be composed of four
audio elements, one for each channel.

The purpose of Picture and Sound Items is trivial; Data Items are used to carry teletext, closed cap-

Figure 4
Frame wrapping (upper) and clip wrapping (lower)
EBU TECHNICAL REVIEW – 2010 Q3 3 / 10
P. Ferreira

MATERIAL EXCHANGE FORMAT
tions or similar data; Compound Items include inextricably-interleaved essence, such as DV. The
System Item provides ancillary information for each content package, as its timecode, for example.

The Generic Container can carry the essence in two basic ways: frame-wrapping and clip-wrapping.
The latter is composed of one or more Content Packages, each being an interleave of all items over
the duration of a frame, creating a KLV packet for each individual element (Fig. 4, upper).

The former is composed of a single Content Package, that is, all samples are lumped together into a
single KLV for each element (Fig. 4, lower).

In practice this means that, for an MXF file to be streamable, either it has only one essence element,
or it must be frame-wrapped. For example, a clip-wrapped file with video and four audio channels
would have to buffer all the video and most of the audio before being able to play all tracks in paral-
lel.

Ancillary data
VBI lines and ANC packets have many applications and, while in some cases this information can
be encapsulated as standardized MXF essence or metadata items (e.g. embedded audio, time-
code), in other cases this approach is not practical. For instance, some applications encode non-
standard data in VBI lines, rendering it impossible to preserve that data unless it is forwarded
untouched.

MXF provides four different locations for metadata:
in the Header Metadata;
in a separate data stream, which can be interleaved or multiplexed with essence items;
linked to the System Item;
embedded in the essence itself, e.g. VBI encoded with the active video.

One could think that, ideally, all metadata should be in the Header Metadata. However:
in streaming applications, most information will not be known beforehand;
the number of items may grow so large that it exceeds what can be fitted in a Metadata Set (64k
entries);
decoders would have to buffer all metadata in order to present it synchronously with the
essence.

In order to provide for a flexible way of carrying these data, [11] defines a transport for VBI and ANC
data, wrapped as data elements in an Essence Container. This allows the encoder to insert those
data at the pace which makes sense. A compliant decoder can then easily interpret the data or rein-
sert it back into an SDI stream.

Abbreviations
ANC ANCillary data
BER Basic Encoding Rules
CBE Constant Bytes per Element
EC (MXF) Essence Container
EDL Edit Decision List
FP (MXF) File Package
GoP Group of Pictures
KLV (SMPTE) Key Length Value
MP (MXF) Material Package
MXF Material eXchange Format

OP (MXF) Operational Pattern
RIP Random Index Pack
SDI Serial Digital Interface
SMPTE Society of Motion Picture and Television

Engineers (USA)
http://www.smpte.org/

UL (SMPTE) Universal Label
UMID (SMPTE) Unique Material Identifier
VBE Variable Bytes per Element
VBI Vertical Blanking Interval
EBU TECHNICAL REVIEW – 2010 Q3 4 / 10
P. Ferreira

http://www.smpte.org/

MATERIAL EXCHANGE FORMAT
Index tables
While some applications just
need to play a file continuously,
many require accessing a file
randomly, as shuttling or scrub-
bing, extracting part of a file’s
content, conforming an EDL,
etc.

Achieving this properly, without
additional support, requires an
intimate knowledge of the
essence format and, even then,
it may not be efficient. Worse,
the essence in an MXF file can
be pretty much anything, so
how does an application know
where in the file to look for a
frame, in a way that is agnostic to the essence format? MXF includes a flexible and highly effective
tool for that purpose: the Index Table, which is, roughly, a table that maps frame indexes into byte
offsets in the Essence Container (Fig. 5).

How do Index Tables deal with the diversity of essence formats? There are two basic kinds of
Essence: Constant Bytes per Element (CBE), which include DV, IMX, PCM, DNxHD, AVC-I; and
Variable Bytes per Element (VBE), whose major representative is Long GoP MPEG.

CBE essence is quite simple to index: all frames are equally sized, so a single entry can give
enough information that applies to the whole file. Plus, the index table can be constructed even
before the essence is encoded.

On the other hand, indexing of VBE essence requires one entry per frame, so the Index Table grows
continuously with the number of frames. Worse: since the Index Table is not known beforehand, the
encoder cannot write the table before the essence, and the decoder does not know how to access
the essence items until it sees the Index Table. This gives rise to a corollary: in a streamed file with
VBE essence, the Index Table entries must come after the essence they index.

In order to mitigate this fact, Index Tables can be split into one or more Index Table Segments,
which are interspersed with the Essence Container, allowing the encoder to flush index table seg-
ments periodically.

Partitions
This very fact of having to “flush” the index table periodically is one of the major reasons that led to
MXF having partitions: whenever an encoder decides so, it creates a new partition, writes the index

Figure 5
Index tables

Figure 6
Interleaving vs. Multiplexing
EBU TECHNICAL REVIEW – 2010 Q3 5 / 10
P. Ferreira

MATERIAL EXCHANGE FORMAT
segment, and continues on with
the Essence Container.

Another reason to have parti-
tions is the ability to multiplex
several Essence Containers. In
fact, MXF provides two ways of
transporting several “tracks” of
essence: interleaving, done at
the Essence Container level
(Fig. 6, upper); and multiplex-
ing, done at the partition level
(Fig. 6, lower).

So, what are the rules for partitions? How can an MXF file be structured? As shown in Fig. 7, the
file must have a Header and a Footer Partition; plus there can be zero or more Body Partitions.

Every partition starts with a Defined-length Pack called a Partition Pack. The key of the Partition
Pack identifies it either as a Header, Footer or Body Partition. In addition, the Partition Pack con-
tains generic information such as the MXF version, the Operational Pattern of the file, the type(s) of
the Essence Container(s) in the file, whether an Essence Container and/or Index Table is present in
the partition, etc.

The Partition Pack is followed by the Header Metadata, which is required in the Header but optional
in Body and Footer Partitions. And why would one write the Header Metadata more than once?
Well, for two good reasons: one is for allowing decoders to “catch up” in the middle of a file (e.g. in a
streaming application); the other one is to allow metadata updates. This raises a question: if we can
repeat the metadata, how does a decoder know when it is final? The Partition Pack itself indicates
the status of the Header Metadata, such as whether it contains a partial or final version of the meta-
data.

Finally, Fig. 7 depicts a Run-in, which is an optional non-KLV-coded block for specific applications;
and a Random Index Pack (RIP), which is the very last item in an MXF file and is basically a partition
index, letting decoders quickly jump to partitions in the middle of the file.

Structural metadata
Now that we have covered the details of the MXF file layout, it is time to look into one of MXF’s most
distinctive features: Structural Metadata.

MXF Header Metadata is composed of Structural and Descriptive Metadata. While the latter obvi-
ously serves the purpose of describing content, the former relates to the structure and capabilities of
an MXF file. This includes technically describing the various essence components; conveying EDL
information on how the different ECs compose the desired output timeline; identifying the packages
using UMIDs; storing historical derivation information, e.g. from what tape this material was
ingested, etc.

This makes Structural Metadata fundamental in MXF, as otherwise it would be no more than just a
dumb set of Essence Containers.

Model
MXF Structural Metadata leverages the object-modelling techniques developed in the IT industry
and builds upon a set of object classes and a number of well-defined relationships among them.
Each MXF file constructs instances of these classes (objects or, in MXF terminology, Metadata
Sets), fills in their properties (or elements) with relevant information (for example, a “Track” Meta-
data Set will have an “Edit Rate” element) and links the different Metadata Sets to each other (e.g.

Figure 7
Partition rules
EBU TECHNICAL REVIEW – 2010 Q3 6 / 10
P. Ferreira

MATERIAL EXCHANGE FORMAT
the “Content Storage” Metadata
Set will link to a certain number
of “Package” Metadata Sets).

A thorough description of this
object model is clearly outside
the scope of this article but it is
certainly worth it to highlight
some of the most interesting
parts. The root of the object
model is the “Preface” set
(Fig. 8). It includes generic
information about the file, such
as the MXF version and the
kinds of Essence Containers
carried in the file, and points to
a number of other objects. For
the sake of simplicity, let us for-
get about all other objects and
focus on the “Content Storage”,
especially on the “Package”
objects it links to.

Each Essence Container (EC) in the file is described by a “File Package” (FP) Metadata Set in the
Header Metadata. The FP includes a Track for each essence element. For example, an EC with
video and four audio channels will typically have a Picture Track, four Sound Tracks and a Timecode
Track with the timecode of the original material.

The FP also points to one or more “File Descriptor” sets. These play a hinge role in MXF as they
provide a decoder with all the information required to understand the format (e.g. raster, chroma
sampling, aspect ratio, audio sampling rate), without requiring it to actually decode the essence.

These FP objects describe the “input” of the MXF file. The output, what the viewer shall see, is
described by the Material Package (MP). In the object model, the MP points to one or more seg-
ments of the FPs and lays down these segments, in its own set of tracks and sequences, as “Source
Clip” objects. The way these segments are arranged ultimately determines what the viewer sees.

This is only a small part of the MXF object model, as it contains much more information, such as
identification, hooks for descriptive metadata, historical derivation information, etc. The interested
reader is invited to browse the relevant sections and annexes in the MXF standard.

Serialization
An object model is an abstract, multi-dimensional concept. In order for a MXF file to be able to con-
vey the information to a decoder, this model has to be converted into a sequence of bytes. In MXF
this is done by serializing each of the Metadata Sets as a KLV Local Set. The KLV key identifies the
kind of Metadata Set and each element is wrapped in its own “mini-KLV”, identified by a Local Tag.

This takes care of “flattening” the model. The relationships between objects are maintained using
several linking mechanisms, which include the UMIDs of the Packages, track identifiers and unique
object identifiers.

Operational patterns
As we have seen, MXF can describe fairly complex EDLs, carry several Essence Containers, be laid
out in several different ways. Forcing all decoders to handle this would be an exaggerated burden,

Figure 8
Part of the MXF object model
EBU TECHNICAL REVIEW – 2010 Q3 7 / 10
P. Ferreira

MATERIAL EXCHANGE FORMAT
so MXF includes a mechanism to control the complexity of a file: the Operational Patterns.

Operational Patterns are not part of the core specification but, right from the outset, MXF described
the Generalized Operational Patterns (known as OP1a to OP3c). These OPs use the relationship
between the Material Package(s) and the File Package(s) in order to constrain complexity, e.g.,
most MXF files say: “play the only File Package from start to end, with all tracks active”. The com-
plexity of the Generalized OPs varies along two axes: item complexity and package complexity
(Fig. 9).

There are applications for which the Generalized OPs are not enough and for that reason other OPs
have been defined, either vendor-specific or as a standard, such as OPAtom [12].

OPAtom is intended for applications requiring a simple and predictable layout, with minimum scope
for variation. Its most distinctive feature is that it only allows a single track of essence in a file, mak-
ing it especially suitable for post-production environments, where it became highly popular.

Timecode
MXF allows encoders to store timecode in several places, namely:

in the Header Metadata, in material and source package timecode tracks;
in system items, interleaved with the essence; or
in the payload of picture, compound, sound and data elements, e.g. MPEG, DV, VBI or ANC
packets.

While flexibility is often good, in this case it inevitably led to some confusion. Therefore, some inter-
ested parties defined guidelines on how to deal with timecode consistently. One of the most inter-
esting efforts was made by the EBU, which published Recommendation R122 [13], with the goal of
harmonising timecode implementations.

Figure 9
Generalized operational patterns
EBU TECHNICAL REVIEW – 2010 Q3 8 / 10
P. Ferreira

MATERIAL EXCHANGE FORMAT
Conclusions
This article introduces the major building blocks of MXF. As explained earlier, the suite of MXF
specifications consists of a large number of documents, so the interested reader is invited to browse
these documents, focussing on the areas that are most relevant to the problems at hand.

MXF is widely used and has strong support from the industry; as such, there is a large number of
both commercial and non-commercial discussion forums, which can help readers to find their way.

References
[1] Pedro Ferreira: MXF – a progress report

EBU Technical Review – 2010 Q3.

[2] SMPTE 336M-2004: Data Encoding Protocol Using Key-Length-Value

[3] ANSI/SMPTE 298M-1997: Universal Labels for Unique Identification of Digital Data

[4] ISO/IEC 8825-1:1998: Information Technology – ASN.1 Encoding Rules: Specification of
Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished
Encoding Rules (DER)

[5] SMPTE 377-1M-2009: Material Exchange Format (MXF) – File Format Specification
(Standard)

[6] SMPTE 379-1-2009: Material Exchange Format (MXF) – MXF Generic Container

[7] SMPTE 381M-2005: Material Exchange Format (MXF) – Mapping MPEG Streams into the
MXF Generic Container

[8] SMPTE 382M-2007: Material Exchange Format – Mapping AES3 and Broadcast Wave
Audio into the MXF Generic Container

[9] SMPTE RP 2027-2007: AVC Intra-Frame Coding Specification for SSM Card Applications

[10] The EBU-SMPTE Joint Task Force for Harmonized Standards for the Exchange of
Programme Material as Bit Streams – Final Report: Analyses and Results, July 1998

[11] SMPTE 436: MXF Mappings for VBI Lines and Ancillary Data Packets

[12] SMPTE 390M: Material Exchange Format (MXF) – Specialized Operational Pattern “Atom”

[13] EBU Recommendation R 122: Material Exchange Format Timecode Implementation

Pedro Ferreira was born in 1973, in Guimarães, Portugal. He has an MSc. in Tele-
communications and Computer Science from the University of Porto. After graduat-
ing, he worked at INESC Porto as a researcher on the use of Distributed Systems
technology in Digital Television, collaborating as well in projects such as ACTS
ATLANTIC. He also led the Distributed Systems and Essence Processing area in the
BBC ORBIT project, was responsible for INESC Porto’s participation in some EU IST
projects and was engaged in standardization activities in SMPTE and Pro-MPEG.

In 2002, Mr Ferreira left INESC to co-found MOG Solutions, where he became
responsible for R&D, leading the development of award-winning products such as
MXF::SDK, bespoke projects such as the collaboration with NBC Olympics, as well
as the participation in several EU projects, such as Worldscreen and EDCine.

Pedro Ferreira is now Director of Product Marketing and is striving to make MOG’s products easier to use
and more effective in streamlining file-based workflows. He is also responsible for MOG’s training depart-
ment, collaborating with the EBU and several other customers.
EBU TECHNICAL REVIEW – 2010 Q3 9 / 10
P. Ferreira

MATERIAL EXCHANGE FORMAT
This version: 1September 2010

Published by the European Broadcasting Union, Geneva, Switzerland

ISSN: 1609-1469

Editeur Responsable: Lieven Vermaele

Editor: Mike Meyer

E-mail: tech@ebu.ch

The responsibility for views expressed in this article
rests solely with the author
EBU TECHNICAL REVIEW – 2010 Q3 10 / 10
P. Ferreira

mailto:tech@ebu.ch

